
PQCache: ProductQuantization-based KVCache for Long
Context LLM Inference

Hailin Zhang
Peking University

Xiaodong Ji
Peking University

Yilin Chen
Beijing Institute of

Technology

Fangcheng Fu
Peking University

Xupeng Miao
Carnegie Mellon University

Xiaonan Nie
Peking University

Weipeng Chen
Baichuan Inc.

Bin Cui
Peking University

ABSTRACT
As the field of Large Language Models (LLMs) continues to evolve,
the context length in inference is steadily growing. Key-Value Cache
(KVCache), a crucial component in LLM inference, has now become
the primary memory bottleneck due to limited GPU memory. Cur-
rent methods selectively determine suitable keys and values for
self-attention computation in LLMs to address the issue. However,
they either fall short in maintaining model quality or result in high
serving latency. Drawing inspiration from advanced embedding
retrieval techniques used in the database community, we consider
the storage and searching of KVCache as a typical embedding re-
trieval problem. We propose PQCache, which employs Product
Quantization (PQ) to manage KVCache, maintaining model quality
while ensuring low serving latency. During the prefilling phase, we
apply PQ to tokens’ keys for each LLM layer and head. During the
autoregressive decoding phase, for each newly generated token, we
first identify important tokens through Maximum Inner-Product
Search (MIPS) using PQ codes and centroids, then fetch the corre-
sponding key-value pairs for self-attention computation. Through
meticulous design of overlapping and caching, we minimize any
additional computation and communication overhead during both
phases. Extensive experiments show that PQCache achieves both
effectiveness and efficiency. It maintains model quality even when
only 1/5 of the tokens are involved in attention, while attaining
acceptable system latency.

1 INTRODUCTION
With the emergence of ChatGPT [40], Large Language Models
(LLMs) have captured the attention of researchers and engineers as
promising candidates for Artificial General Intelligence (AGI). LLMs
exhibit exceptional performance in the “next token prediction” task,
where they take a sequence of tokens as input (also called prompt)
and generate subsequent tokens autoregressively during inference.
Constructed with transformer layers, the fundamental mechanism
of LLMs is the self-attention module. For each token, this module
computes “query”, “key”, and “value” representations. Each token’s
query interacts with the previous tokens’ keys (including itself) to
derive attention weights, which are then used for weighted sum-
mation of the previous tokens’ values. Figure 2 illustrates a typical
self-attention module within a transformer layer.

To accommodate increasingly lengthy prompts, the maximum
input length of LLMs has expanded significantly, from 2K-4K [50,
52] to 32K [25, 51], 128K [15, 40], or evenmillions of tokens [2, 9, 31].
As illustrated in Figure 2, the process of LLM inference involves
two phases: prefilling and decoding. During prefilling, LLMs handle

the lengthy input and compute keys and values for all input tokens.
During decoding, LLMs generate the next new token and produce
its key and value. To avoid redundant computations, the keys and
values of preceding tokens are commonly cached in the Key-Value
Cache (KVCache), and fetched for subsequent tokens’ attention
computation. However, as prompts grow in length, the memory
consumption of KVCache has far exceeded the memory capacity
of each individual GPU, even for 7B and 13B LLMs in Figure 1(a).
This poses a formidable challenge for modern LLM inference.

(a) Model and KVCache memory. (b) Attention example.

Figure 1: Observations. The left figure shows the KVCache
memory consumption of LLMs (for themeaning of MHA and
GQA, please refer to Section 2.1). The right figure shows an
example of attention scores on the MultiNews dataset [12],
with darker colors indicating higher scores.

Recognizing that specific tokens significantly influence genera-
tion, i.e. their attention weights are much larger than others [33, 63],
numerous methods selectively incorporate these tokens within at-
tention mechanisms while excluding others. This approach aims
to address the memory challenge posed by KVCache and is com-
monly referred to as selective attention [37]. Related methods can
be classified into two categories: KVCache dropping [33, 58, 63]
and KVCache offloading [46, 57]. However, these methods either
rely on improper assumptions or introduce notable latency dur-
ing inference, failing to obtain both effectiveness and efficiency.
KVCache dropping methods discard unnecessary key-value pairs,
based on the assumption that unimportant tokens have no rele-
vance for subsequent generation. Nevertheless, as shown in an
attention score example in Figure 1(b), many tokens with lower
average attention weights can still contribute to later generated to-
kens. Prior research [10, 29] also highlights the drawback of direct
dropping. KVCache offloading methods, including InfLLM [57] and
SPARQ [46], store the KVCache on CPU, and fetch relevant key-
value pairs for each newly generated token according to easy-to-
compute proxy scores. InfLLM organizes the KVCache into blocks,

1



Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin Cui

Figure 2: An overview of LLM inference. The left part illustrates the computation process of the self-attention module, where
“Q”, “K”, “V”, “AS”, and “O” represent query, key, value, attention score, and output, respectively. The right part depicts the LLM
inference process, consisting of the prefilling phase and the decoding phase, where “Attn” and “FFN” represent the attention
layer and the feed-forward network layer, respectively. The mathematical symbols are detailed in Table 1.

using representative tokens within each block to compute rele-
vance. Unfortunately, as shown in Figure 1(b), we do not observe
the space-continuity assumption in InfLLM. SPARQ identifies a
subset of dimensions with large magnitude in queries, and fetches
only these dimensions from all keys to determine the most relevant
tokens. Despite demonstrating effectiveness using a large number
of dimensions, it incurs excessive communication overhead, and the
serialized computation-communication process hinders opportuni-
ties for system optimization (e.g., prefetching). In summary, existing
methods fall short in achieving both effectiveness and efficiency
for long-context LLM inference.

We clarify that, selective attention computation, requiring to find
the top-𝑘 relevant tokens’ key-value pairs according to query-key
multiplications, is essentially a Maximum Inner-Product Search
(MIPS) problem in the context of embedding retrieval. Embedding
retrieval, a common research focus within the database and data
management domains, encompasses many well-known methods
including Product Quantization [18, 24], inverted index [6, 7], and
graph-based methods [23, 35]. These methods mainly involve two
operations: (1) index construction, where candidate embeddings
are organized into a well-structured index; (2) searching, which
aims to efficiently retrieve the top-𝑘 relevant embeddings from the
index for a given query embedding. Surprisingly, we found that the
selective attention calculation process during LLM inference can
be mapped into these operations. Specifically, the prefilling phase
generates most of the KVCache and constructs the index, while the
decoding phase finds relevant keys/values and updates KVCache
using the newly generated token.

Inspired by the advanced embedding retrieval techniques, in this
paper we propose PQCache to ensure both effectiveness and effi-
ciency during long-context LLM inference. In the prefilling phase,
we generate the KVCache, store it in CPU memory, and then con-
struct index structures. In the decoding phase, we efficiently retrieve
relevant key-value pairs for self-attention computation and update
KVCache. Considering the latency requirements of LLM inference,
we cannot employ methods with expensive index construction over-
heads, such as graph-based methods or complex inverted-index
methods. We take the advantage of low-cost Product Quantization
(PQ) [24] from embedding retrieval [23], where embeddings are

initially partitioned into sub-embeddings and then clustered. The
key idea of PQCache is to construct PQ codebooks using preceding
token keys and perform MIPS to retrieve relevant key-value pairs
for subsequent self-attention computations. We propose a system-
algorithm co-design method based on PQ, leveraging both its high
recall potentiality, and the opportunities for system optimization.
Further experimental analysis show that PQCache improves the
LongBench scores up to 6.21 compared to existing methods, and
attains acceptable system latency.

To the best of our knowledge, this is the pioneering work that
incorporates embedding retrieval technique to address the KVCache
memory challenge. PQ offers a well-behaved approximation of
embedding vectors (and their inner product), while consuming only
a small amount of memory. In the prefilling phase, we apply PQ to
the generated keys for each layer and head, and obtain PQ codes
and centroids through clustering on CPU. At each autoregressive
decoding step, we perform inner product between the partitioned
query and the PQ centroids, then combine with PQ codes to obtain
the approximate attention weights. Using the approximation, we
retrieve top-𝑘 relevant key-value pairs from CPU memory for self-
attention computation, rather than accessing the entire KVCache.

To enable efficient LLM inference, we carefully design the PQ-
Cache system to reduce latency. We implement prefetching and
overlapping as much as possible: KVCache offloading, PQ construc-
tion, and the fetching of PQ codes and centroids are overlapped with
LLM computation. To maximize the utilization of available GPU
memory and minimize CPU-GPU communication, we additionally
introduce a block-level cache on GPU, specifically for frequently
accessed key-value pairs.

We summarize our contributions as follows:
• We incorporate the embedding retrieval technique PQ into KV-

Cache management to enable both effective and efficient LLM
inference.

• We propose a system-algorithm co-designed approach PQCache
to approximately retrieve the top-𝑘 relevant keys for a given
query, with meticulous design of overlapping and caching.

2



PQCache: Product Quantization-based KVCache for Long Context LLM Inference

• We evaluate PQCache through extensive experiments. It main-
tains model quality with 1/5 of the tokens in attention, while
achieving acceptable system latency.

Table 1: Notations. “#” means “the number of”.

Sym. Explanation Sym. Explanation

𝑛 Batch size. 𝑚 # partitions in PQ.
𝑠 Current sequence length. 𝑏 # bits for PQ codes.
𝑑 Hidden states dimension. 𝑑𝑚 Dimension of each partition.

ℎ (𝑘𝑣) # heads (for keys and values). 𝑘 # tokens in selective attention.
𝑑ℎ Dimension of each head. 𝑇 # K-Means iterations.

2 PRELIMINARY
In this section, we introduce fundamental concepts related to LLM,
PQ, and the memory hierarchy.

2.1 Large Language Model Inference
An overview of LLM inference is depicted in Figure 2. An LLM
comprises a stack of transformer layers, along with a vocabulary
embedding for input and a token classifier for output. The self-
attention module, which is a crucial component of a transformer
layer, facilitates interaction and information aggregation among
different tokens. Multi-Head Attention (MHA) and Grouped-Query
Attention (GQA) [3] are the primary variants of the self-attention
module. Following the notations in Table 1, the attention module
receives an input of shape (𝑛, 𝑠, 𝑑). In MHA, the input is separately
projected and transposed for query, key, value, resulting in the
same shape of (𝑛,ℎ, 𝑠, 𝑑ℎ), where it usually holds that 𝑑 = ℎ ∗ 𝑑ℎ .
Different heads are expected to capture different semantic infor-
mation. The attention mechanism multiplies the queries and keys,
applies a lower-triangular mask to restrict queries to preceding
keys only, and performs softmax to obtain the attention scores of
shape (𝑛,ℎ, 𝑠, 𝑠). The attention scores are then used to weighted-
sum the values, yielding an output of shape (𝑛,ℎ, 𝑠, 𝑑ℎ), which is
later reshaped into (𝑛, 𝑠, 𝑑). To alleviate memory and computation
burden, GQA employs a smaller number of heads ℎ𝑘𝑣 for keys and
values, resulting in their shape being (𝑛,ℎ𝑘𝑣, 𝑠, 𝑑ℎ). In this setup,
each key-value pair corresponds to multiple queries.

During LLM inference, each execution of the model generates a
new token, following an autoregressive manner. The first traversal
and the subsequent traversals of the LLM are referred to as “prefill-
ing” and “decoding” separately, as shown in Figure 2. During the
prefilling phase, the self-attention module computes the queries,
keys, and values for all input tokens, and stores the key-value pairs
as KVCache for later usage. During the autoregressive decoding
phase, the attention module only computes the query, key, value for
the last generated token. It leverages previous keys and values from
the KVCache, and computes an attention score of shape (𝑛,ℎ, 1, 𝑠).
Concurrently, the newly generated key and value are added to the
KVCache. Consequently, the memory consumption of KVCache
scales linearly with the sequence length, which leads to a memory
bottleneck in scenarios involving long-context LLM inference.

Figure 3: An overview of PQ construction and searching.

2.2 Product Quantization
PQ [24] was proposed to facilitate efficient Approximate Nearest
Neighbor Search (ANNS), retrieving relevant embeddings from
a large pool of candidates given a query embedding. MIPS is a
special case of ANNS that uses inner product as similarity. As
shown in Figure 3, PQ divides each candidate embedding into𝑚
partitions, essentially decomposing the original embedding space
into𝑚 separate sub-spaces. Each sub-space undergoes K-Means
clustering to group the sub-embeddings, yielding 2𝑏 centroids. Each
embedding is assigned𝑚 codes, each having 𝑏 bits, corresponding
to the centroids. These compact PQ codes enable the reconstruction
of approximate embeddings with reduced memory requirements.
During ANNS, the query embedding computes similarity with the
centroids and aggregates the similarity using PQ codes, bypassing
the need for full similarity calculations with every embedding.

PQ has a profound impact on ANNS, with its principles inte-
grated into various efficient ANNS methods [6, 23, 27]. PQ has
several variants, including Optimized PQ [18], Residual Quantiza-
tion [36], and SCaNN [19]. While PQ was initially designed for
ANNS, its variants are also applied in various learning tasks [30,
53, 61] to achieve effective compression and efficient computation.

2.3 GPU-CPU Memory Hierarchy
Modern deep learning tasks heavily rely on GPUs for executing
compute-intensive operations. The GPU-CPU structure forms a
typical memory hierarchy: the more expensive GPU memory of-
fers faster memory I/O speeds for computation, while the CPU
memory, connected via PCIe or NVLink, provides lower bandwidth.
As model parameters increase and the demand for intermediate
results storage (such as KVCache) grows, CPUs are often employed
to share the memory load. Numerous research studies in machine
learning systems propose offloading certain model parameters or
activations to the CPU memory [39, 42, 45, 47], thereby enhancing
the overall performance of GPU-centric deep learning tasks. The
primary challenge in this context is to effectively schedule memory
I/O (or say GPU-CPU communication) in conjunction with GPU
computation to efficiently hide the associated overhead.

3 PQCACHE
In this section, we introduce PQCache, a novel system-algorithm co-
designed method to enable effective and efficient long context LLM
inference with large-scale KVCache. Figure 4 provides an overview

3



Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin Cui

Figure 4: An overview of PQCache. For simplicity, we only illustrate the process for a single transformer layer.

of PQCache, where the KVCache from the prefilling phase is first
offloaded to CPU, compressed using PQ, then fetched on demand
through MIPS during the decoding phase.

3.1 Overview
We design PQCache to reserve all the KVCache in CPU, and se-
lectively fetch relevant key-value pairs for self-attention compu-
tation. In long context inference scenario, the entire KVCache is
too large for both attention computation and I/O communication
within the memory hierarchy. Therefore, a common technique is
to only perform attention on a subset of the key-value pairs, a
process known as “selective attention”. According to previous re-
search [1, 17, 33, 44, 46, 55, 57, 59, 63], attention score is a proper
metric to measure the importance or relevance of previous tokens.
As shown in Figure 5, we plot the attention score distributions at
several randomly-selected positions on an example from the XSUM
dataset [38]. The attention scores generally follow powerlaw distri-
butions, indicating that a small part of tokens are more important
than most other tokens. Therefore, we can only include those to-
kens with large scores for self-attention computation. Following
prior works [20, 58, 63], we also include initial tokens and the most
recent tokens (called local tokens) in attention computation.

(a) Layer 3, head 25. (b) Layer 11, head 15. (c) Layer 20, head 27. (d) Layer 21, head 16.

Figure 5: Distributions of attention scores.

As detailed in Section 2.1, attention scores are calculated using a
softmax function applied to the product of the current query and
preceding keys. The procedure of identifying the top-𝑘 keys with
the highest scores fundamentally constitutes a Maximum Inner
Product Search (MIPS) operation. Therefore, we try to leverage em-
bedding retrieval techniques to enable effective selective attention
and address the KVCache memory issue. Based on the observations
above, we design PQCache, which offloads all the KVCache to CPU,
and fetch only relevant tokens’ key-values pairs during the decod-
ing phase. Calculating exact attention scores of all previous tokens
involves costly I/O communication, which is unacceptable in long

context LLM inference. Inspired by Approximate Nearest Neighbor
Search (ANNS) [6, 23, 27], we leverage the light-weight Product
Quantization (PQ) method [24], which compress the vectors by
partitioning and K-Means clustering. Though there are other ANNS
methods (e.g. graph-based methods [13, 23, 35]) that can achieve
better recall performance, they suffer from a computationally ex-
pensive construction process which may hinder LLM inference.

In PQCache, we construct PQ at the prefilling phase and utilize
PQ at the decoding phase. At the prefilling phase, we need to calcu-
late all the input tokens’ keys and values for the self-attention mod-
ule. After obtaining the keys, which have the shape of (𝑛,ℎ𝑘𝑣, 𝑠, 𝑑ℎ),
we can construct PQ for each sample and each head. Concretely, for
a tensor of shape (𝑠, 𝑑ℎ), we further split the dimension 𝑑ℎ into𝑚
sub-spaces with dimension 𝑑𝑚 . For partitioned vectors (𝑚, 𝑠, 𝑑𝑚),
where 𝑑𝑚 = 𝑑ℎ/𝑚, we conduct K-Means clustering separately for
each group and get the centroids of shape (𝑚, 2𝑏 , 𝑑𝑚) and PQ codes
of shape (𝑠,𝑚). Each PQ code, which indicates the cluster that the
vector belongs to, only consumes 𝑏 bits to store.

At the decoding phase, we first perform matrix multiplication
between the query and the PQ centroids, then aggregate the results
for all the tokens according to PQ codes. We can determine the top-
𝑘 relevant tokens using the approximate scores (before softmax)
After fetching the approximate top-𝑘 key-value pairs from CPU,
the self-attention computation continues with retrieved tokens.
Unlike normal embedding retrieval tasks, in LLM inference, newly
generated keys and values are added into the KVCache. These
tokens are first regarded as local tokens and reserved in GPU.When
they are evicted from the sliding window of local tokens, they are
assigned PQ codes based on their nearest centroids.

3.2 Complexity Analysis
During the prefilling phase, we do not modify the attention com-
putation, so the complexity remains the same for both time and
memory. The additional K-Means clustering process has an average
complexity of 𝑂 (𝑠 ·𝑚 · 2𝑏 ·𝑇 ), where 𝑇 is the number of K-Means
iterations. We leverage the idle CPU resources to perform K-Means,
which is detailed in Section 3.3. During the decoding phase, the
original attention time complextiy is 𝑂 (𝑠 · 𝑑 + 𝑑2). In PQCache,
we first conduct multiplication on PQ centroid with a time com-
plexity of 𝑂 (𝑠 ·𝑚 + 𝑑2), then compute the attention with a time
complexity of𝑂 (𝑘 · 𝑑). The memory complexity is𝑂 (𝑠 ·𝑚 + 2𝑏 · 𝑑),
containing PQ centroids and PQ codes. Considering that𝑚 ≪ 𝑑 ,

4



PQCache: Product Quantization-based KVCache for Long Context LLM Inference

𝑘 ≪ 𝑠 , and 𝑏 is usually a value smaller than 10, the time complexity
𝑂 (𝑠 ·𝑚 + 𝑘 · 𝑑 + 𝑑2) and the memory complexity are much smaller
than the original ones.

To facilitate efficient long context LLM inference, the design
goal of PQCache is to provide overhead-agnostic service. Figure 6
illustrates the computation and communication involved in the
PQCache-enabled LLM inference, covering both the prefilling and
decoding phases. The original LLM computation is filled with blue
color, while the computation and the communication introduced by
PQCache are filled with green and red colors, which can be divided
into four parts: (1) KVCache offloading and PQ structure fetching;
(2) PQ construction using K-Means clustering; (3) Approximate
top-𝑘 computation; (4) The fetch process of top-𝑘 relevant tokens’
key-value pairs. As shown in Figure 6, except for the low-cost top-𝑘
approximation, we employ distinct system design to eliminate these
computation or communication overhead. The system design is
detailed in the following sections.

(a) Prefilling.

(b) Decoding.

Figure 6: PQCache v.s. sequential scheduling.

3.3 Prefilling Phase
At the prefilling phase, on obtaining the input tokens’ keys and
values in each layer, they can attend to attention computation
and be offloaded to CPU simultaneously. Given that the attention
computation time scales quadratically with sequence length, while
the communication time scales linearly, the communication can be
fully overlapped in long context scenarios, as shown in Figure 7.

The K-Means clustering is of great complexity according to Sec-
tion 3.2. To enable overhead-agnostic inference, we aim to fully
utilize the idle CPU resources for clustering. However, as shown in
Figure 7, the clustering process on CPU, including PQ construction
for all heads in each layer, consumes more time than one-layer
transformer computation on GPU at the prefilling stage. This is be-
cause the computational capability of GPUs has grown rapidly over
the past decades, whereas CPUs are not specifically designed for
computationally intensive tasks. To address the issue, we propose
an adaptive K-Means clustering process which limits the number of

Figure 7: The execution time of one-layer transformer com-
putation, offloading, and clustering at the prefilling phase.

iterations for clustering, ensuring that the clustering can be over-
lapped by GPU computation. For any given models and devices,
we profile the computation time of one-layer transformer and K-
Means clustering under different sequence lengths. By modeling
the relationship between computation time and sequence length,
we can determine the maximum number of K-Means iterations that
can overlap with the computation for any given sequence length.
In Section 4.3.3, we empirically study the trade-off between the
efficiency and model quality of different clustering iterations.

3.4 Decoding Phase
At the decoding phase, the constructed PQ structure needs to be
utilized by the attention module in each layer. While the preceding
computation is underway, the PQ centroids and codes of the current
layer can be pre-fetched in parallel. Since the PQ structure consumes
negligible memory according to Section 3.2, its communication can
directly overlap with decoding phase computation.

Throughout the entire inference, the only communication that
cannot be overlapped is the retrieval of the top-𝑘 relevant tokens,
because it is dependent on preceding PQ approximation computa-
tion. Inspired by previous research [33, 57, 63], there are certain
pivotal tokens that are consistently important during the inference
process. Therefore, we maintain an GPU cache for these tokens. Fol-
lowing LM-Infinite [20] and StreamingLLM [58], we first preserve
initial tokens and local tokens in the cache. For the remaining to-
kens, we maintain a block-level cache, wherein the cache structure
resides on CPU and the storage is allocated on GPU. We construct
token-blocks to reduce cache overhead, and cache the blocks on
GPU. During each decoding step, we identify the blocks containing
top-𝑘𝑐𝑎𝑐ℎ𝑒 hit tokens, and use them to fetch tokens while updating
the cache structure. We employ asynchronous updates to avoid
additional overhead. Experimental results in Section 4.3.4 illustrate
the cache hit-rate, which helps reduce overall communication.

4 EXPERIMENTS
In this section, we conduct experiments and compare PQCache with
existing methods. We experimentally show that PQCache achieves
both effectiveness and efficiency.

4.1 Experimental Setup
4.1.1 Models. We conduct experiments using two representative
open-source LLMs: LLaMA-2-7B-Chat [52] and Mistral-7B-Instruct-
v0.2 [25]. The former employsMHA and supports 4K context length,

5



Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin Cui

while the latter uses GQA and supports 32K context length. Both
models share similar LLM architectures. We use FP16 for both
models, which is a common practice in LLM inference.

4.1.2 Tasks. We evaluate PQCache on LongBench [5], a widely-
used benchmark for long-context LLM inference. Since the models
are mainly pre-trained on English data, we assess all the English
tasks within the benchmark. These tasks include document question
answering, summarization, few-shot learning, and passage retrieval.
Samples in LongBench have an average input token length of 8K.

We also experiment on two additional tasks: the Needle-in-a-
Haystack [28] and the GSM8k Chain-of-Thought (CoT) reason-
ing [56]. The Needle-in-a-Haystack test evaluates the in-context
retrieval ability of long-context LLMs, asking the model to retrieve
a random fact or statement placed within a lengthy document. In
our experiments, we consider up to 30K document length. GSM8k
is a math reasoning dataset containing 8K high quality diverse
grade school math problems. Its CoT variant is a complex reasoning
task that require model to attend to extensive contextual details for
accurate answers, with an average input length of 3.7K.

4.1.3 Baselines. We consider H2O [63], SPARQ [46], and InfLLM [57]
as our baselines. H2O is the most widely-used method of KVCache
dropping and has been the basis for many enhancements. SPARQ
and InfLLM are the state-of-the-art methods of KVCache offload-
ing. In addition, we further consider a method that retrieves the
exact top-𝑘 tokens for each head, denoted as Oracle. In our experi-
ments, we align the number of tokens for selective attention and
the data transfer amount in Oracle, SPARQ, InfLLM, and PQCache,
to achieve a fair comparison. We allow H2O to attend to more to-
kens, matching the memory usage of the selected key-value pairs
and the data transfer amount in the other methods, following the
experiment settings in SPARQ. We refer to this baseline as H2O(C),
where “C” means compensation.

4.1.4 Hardware Environment andHyperparameters. We con-
duct all experiments on NVIDIA A800 40GB GPU cards. Most of the
hyperparameters are determined based on the number of tokens
and the amount of data transferred. We use𝑚 = 2 and 𝑏 = 6 for
PQ by default. For other hyperparameters, we align them with the
settings from the corresponding papers or open-source codes.

4.2 Model Performance
4.2.1 LongBench. The LongBench results of the methods on two
LLMs are presented in Table 2 and 3. LongBench uses different
metrics for each dataset and calculates an average score to measure
overall performance.We consider including 1/5 and 1/10 of the input
tokens in selective attention, respectively, with an extra communi-
cation that equals to 1/128 of the KVCache memory: for PQCache,
we use𝑚 = 2 and 𝑏 = 6, which satisfies 2 × 6/16/128 < 1/128; for
SPARQ, we use 𝑟 = 1 considering 𝑑ℎ = 128; for InfLLM, we use
1 representative token from every 128 tokens. H2O(C) is allowed
to attend to more tokens as introduced in Section 4.1.3. Excluding
Oracle, the best results for each setting, are highlighted in bold.

On average, models without compression (denoted as Full) can
achieve the best results, since there is nearly no information loss1.
1In LongBench, when the sequence length exceeds the model’s maximum context
length, only the initial and the last tokens are used [5], resulting in information loss.

PQCache outperforms the major baselines (i.e., H2O(C), InfLLM,
and SPARQ) on most of the datasets. Although PQCache achieves
slightly lower scores in a handful of cases, it exhibits substantial
improvements on average. Concretely, PQCache achieves +3.88
and +6.21 improvements on Mistral-7B, and achieves +1.61 and
+1.60 improvements on LLaMa2-7B, respectively. Note that the
offloading-based counterparts, InfLLM and SPARQ, have the worst
performance on average due to the limited additional communi-
cation for minimized latency. In contrast, PQCache performs well
under the same constraint, validating the strength of our work.

Oracle is an ideal approach with the exact top-𝑘 tokens for se-
lective attention, which gives excellent performance in most cases.
However, we observe that PQCache even beats Oracle and achieves
the same score as the uncompressed counterpart in the “1/5#Tokens”
cases. This suggests that clustering may help PQCache uncover in-
trinsic structures within the KVCache latent space, thus leading to
promising results. Furthermore, although it is usually expected that
the performance should drop when there are fewer tokens, there
are exceptions where the opposite happens. This could be because
not all tokens are useful for generating new ones, so getting rid of
unnecessary ones might enhance inference.

4.2.2 Needle-in-a-Haystack. We use Mistral-7B-inst-v0.2 for
this test. We employ the common setting [4]: the “haystack” is Paul
Graham’s Essays, and the “needle” is “The best thing to do in San
Francisco is eat a sandwich and sit in Dolores Park on a sunny day.”
For each experiment, we use 1/5 the number of tokens in selective
attention, and 1/128 extra communication. The results are shown
in Figure 8, where the 𝑥-axis represents the “haystack” length and
the 𝑦-axis represents the position that the “needle” hides. Greener
shades indicate greater accuracy.

Among all the methods, PQCache achieves the best performance,
successfully locating the needle in nearly all scenarios. The ma-
jor baselines, however, fail to retrieve the needle in a substantial
amount of cases. InfLLM, in particular, struggles to find the needle
in most cases, possibly due to its reliance on block-partitioning and
the needle not being considered as representative tokens. It can
locate the needle when it is among the initial or local tokens, which
we include in attention.

4.2.3 GSM8k CoT Reasoning. We use Mistral-7B-inst-v0.2 for
this task. Our prompt strategy involves 8 questions with 9-step rea-
soning and 2 questions with 8-step reasoning per sample, a common
setup for long context inference [14]. We use 1/128 extra communi-
cations. As shown in Figure 9(a), PQCache consistently outperforms
H2O, SPARQ, and InfLLM under varying token counts. Some re-
sults even surpass the uncompressed counterpart, suggesting that
using part of the tokens can lead to improvements. Contrary to
previous findings [29], we observe that H2O performs well using
the advanced Mistral model. H2O(C) performs better than PQCache
using 1/10 number of tokens, as it is allowed to access more tokens.

4.2.4 Impact of Extra Communication. We investigate how the
amount of extra communication impacts the model performance
on the HotPotQA dataset, as shown in Figure 9(b). Fixing 1/10 to-
kens used, as the amount of extra communication increases from
1/128 to 1/16 of the KVCache memory, InfLLM and PQCache show
relatively stable performance, while SPARQ has steadily improved

6



PQCache: Product Quantization-based KVCache for Long Context LLM Inference

Table 2: LongBench evaluation of the Mistral-7B-inst-v0.2 GQA model (32K context length). InfLLM, SPARQ, and PQCache all
involve extra communications at an amount of 1/128 KVCache memory for pre-calculating relevance; H2O attends to more
tokens where the memory equals to other methods’ selected tokens and transferred data amount.

1/5 #Tokens + 1/128 Extra Comm 1/10 #Tokens + 1/128 Extra CommDataset Full Oracle H2O(C) InfLLM SPARQ PQCache Oracle H2O(C) InfLLM SPARQ PQCache

NarrativeQA 21.27 22.18 22.07 19.90 22.25 22.35 22.34 21.54 17.55 22.45 22.62
Qasper 29.22 28.62 23.43 19.24 19.95 28.26 27.90 21.19 14.76 17.69 28.29

MultiFieldQA 47.84 48.02 43.31 41.13 39.22 48.27 48.23 39.22 36.66 35.02 47.95
HotpotQA 37.92 37.16 36.86 33.97 33.48 37.12 36.74 33.02 31.09 31.68 36.24
2WikiMQA 21.83 21.02 18.16 18.48 16.68 21.25 21.16 17.76 16.15 16.14 21.21
Musique 18.58 18.45 17.77 18.96 16.10 18.37 18.34 16.85 14.08 13.18 18.47
GovReport 31.57 31.98 29.13 30.49 27.12 31.53 31.84 27.36 29.19 24.68 31.12
QMSum 24.31 23.76 23.23 22.64 22.21 23.79 23.98 23.12 21.52 22.09 23.27

MultiNews 26.85 26.79 25.37 24.38 23.77 26.70 26.86 24.94 23.19 22.40 26.53
TREC 71.00 71.00 68.00 59.50 62.00 71.00 71.00 67.50 53.00 55.50 70.50

TriviaQA 86.23 86.22 86.17 85.80 86.58 86.14 86.40 86.45 85.54 85.98 86.40
SAMSum 43.04 43.27 42.61 41.51 42.57 43.35 43.47 42.21 39.55 42.79 43.13
Count 2.62 3.42 3.50 2.96 4.80 3.93 3.26 2.44 2.00 3.15 3.56

Retrieval 88.74 88.40 56.56 35.67 57.19 88.44 89.80 37.41 20.00 39.39 88.63

Average 39.32 39.30 35.44 32.48 33.85 39.32 39.38 32.93 28.88 30.87 39.14

Table 3: LongBench evaluation of the LLaMA-2-7B-Chat MHAmodel (4K context length). InfLLM, SPARQ, and PQCache all
involve extra communications at an amount of 1/128 KVCache memory for pre-calculating relevance; H2O attends to more
tokens where the memory equals to other methods’ selected tokens and transferred data amount.

1/5 #Tokens + 1/128 Extra Comm 1/10 #Tokens + 1/128 Extra CommDataset Full Oracle H2O(C) InfLLM SPARQ PQCache Oracle H2O(C) InfLLM SPARQ PQCache

NarrativeQA 18.78 18.55 17.53 12.45 17.40 19.01 18.05 17.04 11.88 16.44 17.56
Qasper 22.11 20.40 19.37 14.0 20.21 21.07 20.38 18.33 12.48 17.31 20.08

MultiFieldQA 36.77 37.58 31.69 29.39 33.21 38.72 37.23 31.82 23.32 31.27 37.79
HotpotQA 27.83 28.25 26.44 25.67 24.38 27.78 27.79 25.72 25.01 23.66 26.36
2WikiMQA 31.51 31.96 29.65 23.95 29.99 31.23 31.08 30.68 25.73 29.02 30.00
Musique 8.31 8.23 8.64 9.03 7.01 7.65 8.19 8.40 8.68 4.91 7.24
GovReport 26.91 26.86 23.62 23.54 24.04 26.91 26.50 22.89 23.22 22.47 26.69
QMSum 20.68 20.31 20.97 19.11 21.03 20.94 20.57 20.76 18.69 20.48 21.33

MultiNews 26.23 26.08 24.31 22.32 25.15 26.46 26.44 24.28 20.52 23.48 26.57
TREC 64.00 64.00 62.50 48.0 62.50 64.00 64.00 60.50 40.0 60.50 63.50

TriviaQA 83.26 83.16 82.56 71.15 81.09 83.43 81.74 81.27 61.45 80.99 83.23
SAMSum 41.53 41.31 40.07 37.3 36.90 41.67 41.26 39.76 34.6 39.79 41.19
Count 2.92 2.98 2.48 2.68 2.35 3.03 3.80 2.68 2.92 2.58 3.01

Retrieval 8.00 7.50 6.50 6.25 5.50 7.00 5.50 4.50 5.00 6.50 6.50

Average 29.92 29.80 28.31 24.66 27.91 29.92 29.47 27.76 22.39 27.10 29.36

(a) H2O(C). (b) SPARQ. (c) InfLLM. (d) PQCache.

Figure 8: Experimental results of the Needle-in-a-Haystack test.

performance. PQCache consistently achieves high scores, outper-
forming the other methods when the communication amount is
no larger than 1/32 KVCache. SPARQ already incurs significant
latency under the 1/128 case, as shown in Section 4.3.2. Even it per-
forms well under the 1/16 case, the latency becomes increasingly
unacceptable. In low-communication scenarios, which are suitable
for practical usage, PQCache achieves the best model performance.

4.2.5 Impact of PQ Configuration. We evaluate the effect of
PQ configurations. Since PQ has a memory consumption of 𝑂 (𝑠 ·
𝑚 · 𝑏 + 2𝑏 · 𝑑ℎ), where the second term is negligible, we adjust the
values of𝑚 and 𝑏 while keeping their product (the communication
volumes) nearly unchanged. Figure 9(c) shows the results on Hot-
PotQA and Qasper datasets with 1/10 tokens in selective attention,
where the legends indicate𝑚 × 𝑏. All configurations perform well.

7



Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin Cui

(a) Results on GSM8k CoT. (b) Varying communications. (c) Different PQ configurations.

Figure 9: Model performance on GSM8k CoT, and other hyper-parameters.

(a) Time to 2nd token. (b) Time per output token. (c) Trade-off time and score. (d) Cache hit-rate.

Figure 10: Latency experiments.

Configurations with𝑚 = 2 yield the most stable results, offering an
ample number of centroids. Though 𝑏 = 8 exhibits better results,
in practice we find that 𝑏 = 6 offers more stable latency and lower
memory usage while still delivering promising model performance.
Therefore, we choose it as the default configuration.

4.3 Efficiency
4.3.1 Prefilling. In PQCache, K-Means clustering occurs concur-
rently with GPU computation. While it doesn’t affect the first token
generation, subsequent tokens depend on clustering results. To
assess system optimization, we use Time To 2nd Token (TT2T),
considering query entry to LLM output time and KVCache man-
agement overhead. As shown in Figure 10(a), with overlapping and
adaptive clustering, PQCache can achieve the lowest TT2T. All
baseline methods have significant overhead. Since H2O collects
attention scores during prefilling, it cannot utilize FlashAttention
for acceleration and encounters OOM when dealing with lengthy
input. SPARQ has no prefilling overhead, but its decoding process
is slow (see Section 4.3.2). InfLLM incurs time overhead due to the
setup required for block-level KVCache management.

4.3.2 Decoding. Time Per Output Token (TPOT) measures the
time of each decoding step. We compare the TPOT of H2O, SPARQ,
InfLLM, and PQCache in Figure 10(b). Here we use 1/5 number of
tokens in selective attention, and a 4096-token GPU cache. SPARQ
exhibits the highest latency due to its sequential computation and
communication, with the communication scaling linearly with the
input sequence length. All the other methods exhibit per-token
latency faster than the human reading speed, which is around

250 words (≈333 tokens) per minute [64]. H2O avoids extra com-
munications, while InfLLM and PQCache both leverage system
optimizations to accelerate decoding. InfLLM’s block-level token
management allows it to efficiently gather data from the CPU; how-
ever, this block-level assumption negatively impacts the model’s
overall quality. PQCache incorporates prefetching and caching,
achieving an acceptable TPOT while not degrading model quality.

4.3.3 Trade-off between Time and Accuracy. In Section 3.3,
we design an adaptive K-Means clustering strategy to eliminate
latency. To investigate the impact of this strategy on model accu-
racy, we conduct an experiment with varying numbers of clustering
iterations on the HotpotQA dataset, with 1/10 tokens involved in
attention. As shown in Figure 10(c), the adaptive strategy has the
lowest clustering time with good enough model quality. Though
clustering with more iterations results in better scores, the associ-
ated increase in inference latency is considerable. Trading-off time
and accuracy, the adaptive strategy is the most practical choice for
real-world applications. We expose an interface that lets users set
the number of iterations, enabling them to balance model perfor-
mance and latency for their specific needs.

4.3.4 Cache Hit-rate. We assess the cache hit-rate for Least Re-
cently Used (LRU) and Least Frequently Used (LFU) policies across
varying numbers of top-𝑘𝑐𝑎𝑐ℎ𝑒 blocks involved during decoding.
Our experiments are conducted on the HotpotQA dataset, with 1/10
tokens in selective attention and 4096 tokens in GPU cache (128
tokens per block). As shown in Figure 10(d), both LRU and LFU
exhibit similar performance, achieving around 0.5 hit-rate across
different numbers of blocks. As block count increases, the hit-rate

8



PQCache: Product Quantization-based KVCache for Long Context LLM Inference

initially rises due to more tokens being found within blocks. How-
ever, it eventually declines as blocks with fewer hits update the
cache structure, disrupting the normal cache logic. In practice, we
set the number of blocks to 32, yielding a hit-rate around 0.6, which
reduces communication by 60%.

5 RELATEDWORK
Selective Attention for KVCache. To eliminate the impact of
memory-intensive KVCache, a group of methods include only es-
sential tokens for attention computation during LLM inference.
One way is to discard unnecessary tokens. LM-Infinite [20] and
Streaming-LLM [58] only preserve the initial tokens and themost re-
cent tokens. H2O [63] and Scissorhands [33] utilize attention scores
to identify important tokens. Their following works [1, 17, 44, 55]
have explored adaptive token selection and additional metrics for
better model accuracy. The LLMLingua series [26, 41] leverage an
auxiliary small model to tell which tokens are necessary. Since
token-level compression evicts the tokens in a greedy manner, the
information loss in subsequent decoding phase may lead to model
degradation. Another way is to fetch relevant tokens on demand
during the decoding phase. SPARQ [46] and InfLLM [57] offload
KVCache to CPU, and selectively fetch relevant key-value pairs for
each attention computation. PQCache also falls under this category
of methods, demonstrating effective and efficient LLM inference in
comparison to existing techniques.

KVCache Quantization. Quantization can be directly applied
on the entire KVCache [11, 21, 34] - a straight-forward approach
with promising model quality. Other compression techniques can
also be employed to address the residuals introduced by quanti-
zation [29]. It is worth noting that quantization is orthogonal to
token importance, and recent research has explored applying both
techniques [59].

KVCache Scheduling. Another way to address the KVCache
memory challenge is to meticulously schedule the KVCache within
memory hierarchy. FlexGen [47] employs linear programming to
schedule the communication, searching for efficient patterns to
store and access tensors. AttentionScore [16] maintains a hierarchi-
cal KV caching system, allowing efficient reuse of KVCache across
multi-turn conversations. Another related research topic is KV-
Cache streaming for LLM serving [32, 49], which involves handling
multiple requests within more levels of memory hierarchy.

Embedding Management. Embedding management is a com-
mon research focus within the database and data management
domains, including embedding compression [48, 60, 62], embed-
ding retrieval [22, 54], and key-value storage [8, 43]. Our work
provides a potential direction for integrating classic embedding
management into the LLM ecology.

6 CONCLUSION
In this paper, we proposed PQCache, a system-algorithm co-designed
method for effective and efficient long context LLM inference. We
incorporated the embedding retrieval technique PQ to reduce both
memory and computation burden, and leveraged PQ codes and cen-
troids to facilitate efficient MIPS for important tokens used in the
attention module. Through meticulous overlapping and caching,

we managed to minimize overhead to a negligible level. We evalu-
ated PQCache on extensive experiments, and show that PQCache
effectively maintains model quality with only 1/5 of the tokens
involved in attention, while achieving acceptable system latency.

REFERENCES
[1] MuhammadAdnan, Akhil Arunkumar, Gaurav Jain, Prashant J. Nair, Ilya Solovey-

chik, and Purushotham Kamath. 2024. Keyformer: KV Cache Reduction through
Key Tokens Selection for Efficient Generative Inference. CoRR abs/2403.09054
(2024). https://doi.org/10.48550/ARXIV.2403.09054 arXiv:2403.09054

[2] Moonshot AI. 2024. KimiChat. https://kimi.moonshot.cn/
[3] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Fed-

erico Lebrón, and Sumit Sanghai. 2023. GQA: Training Generalized Multi-
Query Transformer Models from Multi-Head Checkpoints. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor, Juan Pino,
and Kalika Bali (Eds.). Association for Computational Linguistics, 4895–4901.
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298

[4] Anthropic. 2023. Long context prompting for Claude 2.1. https://www.anthropi
c.com/news/claude-2-1-prompting

[5] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang,
Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. 2023. LongBench: A Bilingual, Multitask Benchmark for Long Context
Understanding. CoRR abs/2308.14508 (2023). https://doi.org/10.48550/ARXIV.2
308.14508 arXiv:2308.14508

[6] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. 2018. Revisiting the
Inverted Indices for Billion-Scale Approximate Nearest Neighbors. In Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part XII (Lecture Notes in Computer Science), Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.), Vol. 11216.
Springer, 209–224. https://doi.org/10.1007/978-3-030-01258-8_13

[7] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (Eds.). 5199–5212. https://proceedings.neurips.cc/paper/2021/hash/299
dc35e747eb77177d9cea10a802da2-Abstract.html

[8] Xubin Chen, Ning Zheng, Shukun Xu, Yifan Qiao, Yang Liu, Jiangpeng Li, and
Tong Zhang. 2021. KallaxDB: A Table-less Hash-based Key-Value Store on
Storage Hardware with Built-in Transparent Compression. In Proceedings of the
17th International Workshop on Data Management on New Hardware, DaMoN
2021, 21 June 2021, Virtual Event, China, Danica Porobic and Spyros Blanas
(Eds.). ACM, 3:1–3:10. https://doi.org/10.1145/3465998.3466004

[9] Alibaba Cloud. 2024. Tongyi Qianwen. https://tongyi.aliyun.com/qianwen/
[10] Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and

Beidi Chen. 2024. Get More with LESS: Synthesizing Recurrence with KV Cache
Compression for Efficient LLM Inference. CoRR abs/2402.09398 (2024). https:
//doi.org/10.48550/ARXIV.2402.09398 arXiv:2402.09398

[11] Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. 2024. QAQ: Quality
Adaptive Quantization for LLM KV Cache. CoRR abs/2403.04643 (2024). https:
//doi.org/10.48550/ARXIV.2403.04643 arXiv:2403.04643

[12] Alexander R. Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R. Radev.
2019. Multi-News: A Large-Scale Multi-Document Summarization Dataset and
Abstractive Hierarchical Model. In Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28-
August 2, 2019, Volume 1: Long Papers, Anna Korhonen, David R. Traum, and
Lluís Màrquez (Eds.). Association for Computational Linguistics, 1074–1084.
https://doi.org/10.18653/V1/P19-1102

[13] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor SearchWith The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474. https://doi.org/10.14778/3303753.3303754

[14] Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng, and Tushar Khot. 2023.
Chain-of-Thought Hub: A Continuous Effort to Measure Large Language Models’
Reasoning Performance. CoRR abs/2305.17306 (2023). https://doi.org/10.48550
/ARXIV.2305.17306 arXiv:2305.17306

[15] Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon
Kim, and Hao Peng. 2024. Data Engineering for Scaling Language Models to
128K Context. CoRR abs/2402.10171 (2024). https://doi.org/10.48550/ARXIV.240
2.10171 arXiv:2402.10171

[16] Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo
Deng, Xingkun Yang, Zhou Yu, and Pengfei Zuo. 2024. AttentionStore: Cost-
effective Attention Reuse across Multi-turn Conversations in Large Language
Model Serving. CoRR abs/2403.19708 (2024). https://doi.org/10.48550/ARXIV.2

9

https://doi.org/10.48550/ARXIV.2403.09054
https://kimi.moonshot.cn/
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://www.anthropic.com/news/claude-2-1-prompting
https://www.anthropic.com/news/claude-2-1-prompting
https://doi.org/10.48550/ARXIV.2308.14508
https://doi.org/10.48550/ARXIV.2308.14508
https://doi.org/10.1007/978-3-030-01258-8_13
https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
https://doi.org/10.1145/3465998.3466004
https://tongyi.aliyun.com/qianwen/
https://doi.org/10.48550/ARXIV.2402.09398
https://doi.org/10.48550/ARXIV.2402.09398
https://doi.org/10.48550/ARXIV.2403.04643
https://doi.org/10.48550/ARXIV.2403.04643
https://doi.org/10.18653/V1/P19-1102
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.48550/ARXIV.2305.17306
https://doi.org/10.48550/ARXIV.2305.17306
https://doi.org/10.48550/ARXIV.2402.10171
https://doi.org/10.48550/ARXIV.2402.10171
https://doi.org/10.48550/ARXIV.2403.19708
https://doi.org/10.48550/ARXIV.2403.19708


Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin Cui

403.19708 arXiv:2403.19708
[17] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao.

2023. Model Tells You What to Discard: Adaptive KV Cache Compression for
LLMs. CoRR abs/2310.01801 (2023). https://doi.org/10.48550/ARXIV.2310.01801
arXiv:2310.01801

[18] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product Quan-
tization for Approximate Nearest Neighbor Search. In 2013 IEEE Conference on
Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013.
IEEE Computer Society, 2946–2953. https://doi.org/10.1109/CVPR.2013.379

[19] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix
Chern, and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with
Anisotropic Vector Quantization. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event
(Proceedings of Machine Learning Research), Vol. 119. PMLR, 3887–3896. http:
//proceedings.mlr.press/v119/guo20h.html

[20] Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang.
2023. LM-Infinite: Simple On-the-Fly Length Generalization for Large Language
Models. CoRR abs/2308.16137 (2023). https://doi.org/10.48550/ARXIV.2308.16137
arXiv:2308.16137

[21] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney,
Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. 2024. KVQuant: To-
wards 10 Million Context Length LLM Inference with KV Cache Quantization.
CoRR abs/2401.18079 (2024). https://doi.org/10.48550/ARXIV.2401.18079
arXiv:2401.18079

[22] Ruihong Huang, Shaoxu Song, Yunsu Lee, Jungho Park, Soo-Hyung Kim, and
Sungmin Yi. 2020. Effective and Efficient Retrieval of Structured Entities. Proc.
VLDB Endow. 13, 6 (2020), 826–839. https://doi.org/10.14778/3380750.3380754

[23] Suhas Jayaram Subramanya, FnuDevvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in Neural Information
Processing Systems 32 (2019).

[24] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117–128. https://doi.org/10.1109/TPAMI.2010.57

[25] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. CoRR abs/2310.06825 (2023). https:
//doi.org/10.48550/ARXIV.2310.06825 arXiv:2310.06825

[26] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
LLMLingua: Compressing Prompts for Accelerated Inference of Large Lan-
guage Models. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023,
Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational
Linguistics, 13358–13376. https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825

[27] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity
Search with GPUs. IEEE Trans. Big Data 7, 3 (2021), 535–547. https://doi.org/10
.1109/TBDATA.2019.2921572

[28] Greg Kamradt. 2024. Needle-in-a-Haystack. https://github.com/gkamradt/LL
MTest_NeedleInAHaystack

[29] Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar
Krishna, and Tuo Zhao. 2024. Gear: An efficient kv cache compression recipefor
near-lossless generative inference of llm. arXiv preprint arXiv:2403.05527 (2024).

[30] Lucas D. Lingle. 2023. Transformer-VQ: Linear-Time Transformers via Vector
Quantization. CoRR abs/2309.16354 (2023). https://doi.org/10.48550/ARXIV.230
9.16354 arXiv:2309.16354

[31] Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. 2024. World Model on
Million-Length Video And Language With Blockwise RingAttention. CoRR
abs/2402.08268 (2024). https://doi.org/10.48550/ARXIV.2402.08268
arXiv:2402.08268

[32] Yuhan Liu, Hanchen Li, Kuntai Du, Jiayi Yao, Yihua Cheng, Yuyang Huang, Shan
Lu, Michael Maire, Henry Hoffmann, Ari Holtzman, et al. 2023. CacheGen:
Fast Context Loading for Language Model Applications. arXiv preprint
arXiv:2310.07240 (2023).

[33] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo
Xu, Anastasios Kyrillidis, and Anshumali Shrivastava. 2023. Scissorhands: Ex-
ploiting the Persistence of Importance Hypothesis for LLM KV Cache Compres-
sion at Test Time. In Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.).
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c
6e983e6-Abstract-Conference.html

[34] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir
Braverman, Beidi Chen, and Xia Hu. 2024. KIVI: A Tuning-Free Asymmetric
2bit Quantization for KV Cache. CoRR abs/2402.02750 (2024). https://doi.org/10
.48550/ARXIV.2402.02750 arXiv:2402.02750

[35] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search UsingHierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836. https://doi.org/10.1109/
TPAMI.2018.2889473

[36] Julieta Martinez, Holger H. Hoos, and James J. Little. 2014. Stacked Quantizers for
Compositional Vector Compression. CoRR abs/1411.2173 (2014). arXiv:1411.2173
http://arxiv.org/abs/1411.2173

[37] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqi
Chen, and Zhihao Jia. 2023. Towards efficient generative large language model
serving: A survey from algorithms to systems. arXiv preprint arXiv:2312.15234
(2023).

[38] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don’t Give
Me the Details, Just the Summary! Topic-Aware Convolutional Neural Net-
works for Extreme Summarization. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018, Ellen Riloff, David Chiang, Julia Hockenmaier, and
Jun’ichi Tsujii (Eds.). Association for Computational Linguistics, 1797–1807.
https://doi.org/10.18653/V1/D18-1206

[39] Xiaonan Nie, Xupeng Miao, Zhi Yang, and Bin Cui. 2022. TSPLIT: Fine-grained
GPU Memory Management for Efficient DNN Training via Tensor Splitting.
In 38th IEEE International Conference on Data Engineering, ICDE 2022, Kuala
Lumpur, Malaysia, May 9-12, 2022. IEEE, 2615–2628. https://doi.org/10.1109/IC
DE53745.2022.00241

[40] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:
//doi.org/10.48550/ARXIV.2303.08774 arXiv:2303.08774

[41] Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang,
Qingwei Lin, Victor Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili
Qiu, and Dongmei Zhang. 2024. LLMLingua-2: Data Distillation for Efficient
and Faithful Task-Agnostic Prompt Compression. CoRR abs/2403.12968 (2024).
https://doi.org/10.48550/ARXIV.2403.12968 arXiv:2403.12968

[42] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-Offload:
Democratizing Billion-Scale Model Training. In 2021 USENIX Annual Technical
Conference, USENIX ATC 2021, July 14-16, 2021, Irina Calciu and Geoff Kuen-
ning (Eds.). USENIX Association, 551–564. https://www.usenix.org/conference/
atc21/presentation/ren-jie

[43] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A Space-
Efficient Key-Value Storage Engine For Semi-Sorted Data. Proc. VLDB Endow.
10, 13 (2017), 2037–2048. https://doi.org/10.14778/3151106.3151108

[44] Siyu Ren and Kenny Q. Zhu. 2024. On the Efficacy of Eviction Policy for Key-
Value Constrained Generative Language Model Inference. CoRR abs/2402.06262
(2024). https://doi.org/10.48550/ARXIV.2402.06262 arXiv:2402.06262

[45] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and StephenW.
Keckler. 2016. vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design. In 49th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15-19,
2016. IEEE Computer Society, 18:1–18:13. https://doi.org/10.1109/MICRO.2016.7
783721

[46] Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi,
and Douglas Orr. 2023. SparQ Attention: Bandwidth-Efficient LLM Inference.
CoRR abs/2312.04985 (2023). https://doi.org/10.48550/ARXIV.2312.04985
arXiv:2312.04985

[47] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi
Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. 2023. FlexGen:
High-Throughput Generative Inference of Large Language Models with a Sin-
gle GPU. In International Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA (Proceedings of Machine Learning Research),
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (Eds.), Vol. 202. PMLR, 31094–31116. https:
//proceedings.mlr.press/v202/sheng23a.html

[48] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang.
2020. Compositional Embeddings Using Complementary Partitions for Memory-
Efficient Recommendation Systems. In KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA,
August 23-27, 2020, Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash
(Eds.). ACM, 165–175. https://doi.org/10.1145/3394486.3403059

[49] Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski, and Ana
Klimovic. 2024. D\’ej\aVu: KV-cache Streaming for Fast, Fault-tolerant Genera-
tive LLM Serving. arXiv preprint arXiv:2403.01876 (2024).

[50] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. 2023. Alpaca: A strong, repli-
cable instruction-following model. Stanford Center for Research on Foundation
Models. https://crfm. stanford. edu/2023/03/13/alpaca. html 3, 6 (2023), 7.

[51] Together.ai. 2023. LLaMA-2-7B-32K. https://huggingface.co/togethercomputer/
LLaMA-2-7B-32K

[52] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem

10

https://doi.org/10.48550/ARXIV.2403.19708
https://doi.org/10.48550/ARXIV.2310.01801
https://doi.org/10.1109/CVPR.2013.379
http://proceedings.mlr.press/v119/guo20h.html
http://proceedings.mlr.press/v119/guo20h.html
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2401.18079
https://doi.org/10.14778/3380750.3380754
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://doi.org/10.48550/ARXIV.2309.16354
https://doi.org/10.48550/ARXIV.2309.16354
https://doi.org/10.48550/ARXIV.2402.08268
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.02750
https://doi.org/10.48550/ARXIV.2402.02750
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
http://arxiv.org/abs/1411.2173
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.1109/ICDE53745.2022.00241
https://doi.org/10.1109/ICDE53745.2022.00241
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2403.12968
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://doi.org/10.14778/3151106.3151108
https://doi.org/10.48550/ARXIV.2402.06262
https://doi.org/10.1109/MICRO.2016.7783721
https://doi.org/10.1109/MICRO.2016.7783721
https://doi.org/10.48550/ARXIV.2312.04985
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://doi.org/10.1145/3394486.3403059
https://huggingface.co/togethercomputer/LLaMA-2-7B-32K
https://huggingface.co/togethercomputer/LLaMA-2-7B-32K


PQCache: Product Quantization-based KVCache for Long Context LLM Inference

Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama
2: Open Foundation and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023).
https://doi.org/10.48550/ARXIV.2307.09288 arXiv:2307.09288

[53] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. 2017. Neural Dis-
crete Representation Learning. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (Eds.). 6306–6315. https://proceedings.neurips.cc/paper/201
7/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html

[54] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-
prehensive Survey and Experimental Comparison of Graph-Based Approxi-
mate Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (2021), 1964–1978.
https://doi.org/10.14778/3476249.3476255

[55] Zihao Wang and Shaoduo Gan. 2024. SqueezeAttention: 2D Management of
KV-Cache in LLM Inference via Layer-wise Optimal Budget. arXiv preprint
arXiv:2404.04793 (2024).

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524e
cf4f15af0f7b31abca4-Abstract-Conference.html

[57] Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan
Zhang, Zhiyuan Liu, Song Han, and Maosong Sun. 2024. InfLLM: Unveiling the
Intrinsic Capacity of LLMs for Understanding Extremely Long Sequences with
Training-Free Memory. CoRR abs/2402.04617 (2024). https://doi.org/10.48550/A

RXIV.2402.04617 arXiv:2402.04617
[58] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. 2023.

Efficient Streaming LanguageModels with Attention Sinks. CoRR abs/2309.17453
(2023). https://doi.org/10.48550/ARXIV.2309.17453 arXiv:2309.17453

[59] June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park,
Eunho Yang, Se Jung Kwon, and Dongsoo Lee. 2024. No Token Left Behind:
Reliable KV Cache Compression via Importance-Aware Mixed Precision Quanti-
zation. CoRR abs/2402.18096 (2024). https://doi.org/10.48550/ARXIV.2402.18096
arXiv:2402.18096

[60] Hailin Zhang, Zirui Liu, Boxuan Chen, Yikai Zhao, Tong Zhao, Tong Yang, and
Bin Cui. 2024. CAFE: Towards Compact, Adaptive, and Fast Embedding for
Large-scale Recommendation Models. Proceedings of the ACM on Management
of Data 2, 1 (2024), 1–28.

[61] Hailin Zhang, Yujing Wang, Qi Chen, Ruiheng Chang, Ting Zhang, Ziming Miao,
Yingyan Hou, Yang Ding, Xupeng Miao, Haonan Wang, Bochen Pang, Yuefeng
Zhan, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Xing Xie, Mao Yang, and Bin
Cui. 2023. Model-enhanced Vector Index. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/ac112
e8ffc4e5b9ece32070440a8ca43-Abstract-Conference.html

[62] Hailin Zhang, Penghao Zhao, Xupeng Miao, Yingxia Shao, Zirui Liu, Tong Yang,
and Bin Cui. 2023. Experimental Analysis of Large-scale Learnable Vector Storage
Compression. Proc. VLDB Endow. 17, 4 (2023), 808–822. https://www.vldb.org
/pvldb/vol17/p808-zhang.pdf

[63] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi
Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang
Wang, and Beidi Chen. 2023. H2O: Heavy-Hitter Oracle for Efficient Genera-
tive Inference of Large Language Models. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7
b15572587b78ecfcebb2827f8-Abstract-Conference.html

[64] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu,
Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating Prefill and Decoding
for Goodput-optimized Large Language Model Serving. CoRR abs/2401.09670
(2024). https://doi.org/10.48550/ARXIV.2401.09670 arXiv:2401.09670

11

https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://doi.org/10.14778/3476249.3476255
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.04617
https://doi.org/10.48550/ARXIV.2402.04617
https://doi.org/10.48550/ARXIV.2309.17453
https://doi.org/10.48550/ARXIV.2402.18096
http://papers.nips.cc/paper_files/paper/2023/hash/ac112e8ffc4e5b9ece32070440a8ca43-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac112e8ffc4e5b9ece32070440a8ca43-Abstract-Conference.html
https://www.vldb.org/pvldb/vol17/p808-zhang.pdf
https://www.vldb.org/pvldb/vol17/p808-zhang.pdf
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2401.09670

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Large Language Model Inference
	2.2 Product Quantization
	2.3 GPU-CPU Memory Hierarchy

	3 PQCache
	3.1 Overview
	3.2 Complexity Analysis
	3.3 Prefilling Phase
	3.4 Decoding Phase

	4 Experiments
	4.1 Experimental Setup
	4.2 Model Performance
	4.3 Efficiency

	5 Related Work
	6 Conclusion
	References

